Linear processing of interaural level difference underlies spatial tuning in the nucleus of the brachium of the inferior colliculus.
نویسندگان
چکیده
The spatial location of sounds is an important aspect of auditory perception, but the ways in which space is represented are not fully understood. No space map has been found within the primary auditory pathway. However, a space map has been found in the nucleus of the brachium of the inferior colliculus (BIN), which provides a major auditory projection to the superior colliculus. We measured the spectral processing underlying auditory spatial tuning in the BIN of unanesthetized marmoset monkeys. Because neurons in the BIN respond poorly to tones and are broadly tuned, we used a broadband stimulus with random spectral shapes (RSSs) from which both spatial receptive fields and frequency sensitivity can be derived. Responses to virtual space (VS) stimuli, based on the animal's own ear acoustics, were compared with the predictions of a weight-function model of responses to the RSS stimuli. First-order (linear) weight functions had broad spectral tuning (approximately three octaves) and were excitatory in the contralateral ear, inhibitory in the ipsilateral ear, and biased toward high frequencies. Responses to interaural time differences and spectral cues were relatively weak. In cross-validation tests, the first-order RSS model accurately predicted the measured VS tuning curves in the majority of neurons, but was inaccurate in 25% of neurons. In some cases, second-order weighting functions led to significant improvements. Finally, we found a significant correlation between the degree of binaural weight asymmetry and the best azimuth. Overall, the results suggest that linear processing of interaural level difference underlies spatial tuning in the BIN.
منابع مشابه
Representation of binaural spatial cues in field L of the barn owl forebrain.
This study examined the representation of spatial information in the barn owl Field L, the first telencephalic processing stage of the classical auditory pathway. Field L units were recorded extracellularly, and their responses to dichotically presented interaural time differences (ITD) and interaural level differences (ILD) were tested. We observed a variety of tuning profiles in Field L. Some...
متن کاملFrequency-specific interaural level difference tuning predicts spatial response patterns of space-specific neurons in the barn owl inferior colliculus.
Space-specific neurons in the barn owl's inferior colliculus have spatial receptive fields (RFs) because of sensitivity to interaural time difference and frequency-specific interaural level difference (ILD). These neurons are assumed to be tuned to the frequency-specific ILDs occurring at their spatial RFs, but attempts to assess this tuning with traditional narrowband stimuli have had limited ...
متن کاملCoding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret.
Coding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret. J. Neurophysiol. 78: 2717-2731, 1997. The nucleus of the brachium of the inferior colliculus (BIN) projects topographically to the deeper layers of the superior colliculus (SC), which contain a two-dimensional map of auditory space. In this study, we have used broadband stimuli presented in the fr...
متن کاملEmergence of multiplicative auditory responses in the midbrain of the barn owl.
Space-specific neurons in the barn owl's auditory space map gain spatial selectivity through tuning to combinations of the interaural time difference (ITD) and interaural level difference (ILD). The combination of ITD and ILD in the subthreshold responses of space-specific neurons in the external nucleus of the inferior colliculus (ICx) is well described by a multiplication of ITD- and ILD-depe...
متن کاملTuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus.
Barn owls process sound-localization information in two parallel pathways, the midbrain and the forebrain pathway. Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of these pathways, the auditory arcopallium in the forebrain and the external nucleus of the inferior colliculus in the midbrain, demonstrated that the representations of interaural time di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 9 شماره
صفحات -
تاریخ انتشار 2013